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We derive in details the conserved charges that correspond to Lorentz boosts, first via the well
known method of field theorists, i.e., by the application of Noether’s theorem, and secondly by
considering the Killing vectors in Minkowski spacetime R3,1, a method favored by general relativists.
Indeed, with both methods, we will derive the general form of the conserved charges correspond to
Lorentz transformation, of which Lorentz boost is only a special case. Along the way, we review
some important concepts and give some mathematical exercises for the ambitious readers.

I. INTRODUCTION: GALILEAN BOOST

Before we go down the road of rigor, it is perhaps help-
ful to make a few observations and hand-waving argu-
ments. First of all, let us take a step back from Special
Relativity and consider the question:

What happens if we consider good old New-
tonian physics, instead of Special Relativity?
That is, what is the conserved charge corre-
sponds to good old Galilean boost?

In this case, the transformation from one inertial ref-
erence frame to another is related simply by t 7→ t,
x 7→ x + vt where v is the relative constant velocity be-
tween the frames as usual. In momentum space then,
momentum and position transformed by p 7→ p+mv and
q 7→ q + vt respectively [For simplicity, consider first the
moment t = 0], so that Galilean boost corresponds to a
translation in phase space. This is actually quite natural
if you recall from quantum mechanics that the momen-
tum operator is P̂ = −i~ d

dx , i.e. momentum observable
generates translation in position space. We all know that
position and momentum are just Fourier transform pairs,
so by symmetry, position observable likewise generates
translation in momentum space. This is exactly what
we saw earlier: Galilean boost corresponds to transla-
tion in momentum space, or put it slightly differently,
the generator of Galilean boosts is the position observ-
able q, or more precisely, mq. In many-particle case, we
would expect that the generator is the total mass times
the center of mass [All these can be made fully rigorous,
see, e.g., [1]]. We would like to claim that this is a con-
served quantity, much like momentum, as the generator
of translation, is conserved.

However, if you pause and think for a while, you may
object that this quantity is not conserved since the po-
sition of the center of mass is time dependent [we are
boosting after all]! Previously we set t = 0, but we could
have worked out the case for arbitrary t, in which case
we would indeed get mq − pt. There is however no con-
tradiction. Recall that we are looking at boost symmetry.
This itself is time-dependent, so its “conserved quantity”
turns out to also be time-dependent!

What we say about Galilean boost should be straight-
forwardly generalized to Lorentz boost, but let us do it
rigorously.

II. FIELD THEORIST: NOETHER’S THEOREM

For this section, we will follow the treatment in [2]
closely. Recall that according to Noether’s theorem, ev-
ery continuous symmetry of the Lagrangian gives rise to
a conserved current jµ(x), x ∈ R3,1 such that the equa-
tions of motion implies ∂µj

µ = 0. Note that by symmetry
we mean that after transformation, the Euler-Lagrange
equation remains unchanged, this does not imply that
the Lagrangian is unchanged.

Since we are dealing with continuous symmetry, we can
work with infinitesimals: Consider a continuous infinites-
imal transformation to a field φ(x):

φ(x) 7−→ φ′(x) = φ(x) + ε∆φ(x), (1)

for some as yet unknown ∆φ(x) and small ε.
The Lagrangian transforms as

L(x) 7−→ L′(x) + ε∂µJ µ, (2)

for some J µ.
Since the Lagrangian depends on φ and ∂µφ, chain rule

and product rule gives

ε∆L =
∂L
∂φ

ε∆φ+
∂L

∂(∂µφ)
ε∆(∂µφ) (3)

=
∂L
∂φ

ε∆φ+ ∂µ

[
∂L

∂(∂µφ)
ε∆φ

]
− ∂µ

(
∂L

∂(∂µφ)

)
ε∆φ

(4)

= ε∂µ

[
∂L

∂(∂µφ)
∆φ

]
+ ε

[
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
∆φ.

(5)

By Euler-Lagrange equation [which we assumed invari-
ant under the infinitesimal transformation], only the first
term remains. Therefore

∂µJ µ = ∂µ

[
∂L

∂(∂µφ)
∆φ

]
, (6)

or equivalently,

∂µ

[
∂L

∂(∂µφ)
∆φ− J µ

]
= 0. (7)



2

The conserved current is then defined by

jµ :=
∂L

∂(∂µφ)
∆φ− J µ. (8)

We further define the [conserved] charge by

Q :=

∫
d3x j0. (9)

This is conserved since

∂µj
µ = 0⇒ ∂tj

t − ∂iji = 0 (10)

=⇒ d

dt

∫
d3xj0 −

∫
d3x∂ij

i = 0 (11)

=⇒ d

dt

∫
d3xj0 =

dQ

dt
= 0. (12)

The last implication follows from the implicit assumption
that jµ is compactly supported [physically, this assumes
the current decays sufficiently fast towards infinity], so
that total derivative term vanishes under the integral.

Having revised the standard stuffs above, we now con-
sider infinitesimal form of the Lorentz transformations

Λµν = δµν + ωµν , (13)

where ωµν is infinitesimal. By the definition of Lorentz
transformation ΛT ηΛ = η where η is the standard
Minkowski metric, we have

(δµα + ωµα)(δνβ + ωνβ)ηαβ = ηµν . (14)

Expanding out and keeping only first power in ωµν , we
can obtain the condition

ωµν + ωνµ = 0. (15)

That is, the infinitesimal form ωµν of the Lorentz trans-
formation is necessarily anti-symmetric.

Consider now a scalar field φ(x). Under Lorentz trans-
formation, its transformation law [φ(x) = φ′(x′)] satisfies

φ(x) 7→ φ′(x) = φ(Λ−1x) (16)

= φ(xµ − ωµνxν) (17)

= φ(xµ)− ωµνxν∂µφ(x), (18)

where the last implication follows from neglecting higher
order terms in the power series of φ. This means that
εδφ = −ωµνxν∂µφ(x). Since the Lagrangian [density] is
a scalar quantity, we likewise have

ε∆L = −ωµνxν∂µL = −∂µ(ωµνx
νL). (19)

The last equality is due to the fact that ωµν is anti-
symmetric.

We can now find the conserved current via Eq.(8):

εjµ = − ∂L
∂(∂µφ)

ωανx
ν∂αφ+ ωµνx

νL (20)

= −ωαν
[

∂L
∂(∂µφ)

xν∂αφ− δµαxνL
]

(21)

= −ωανTµαxν , (22)

where

Tµν :=
∂L

∂(∂µφ)
∂νφ− δµνL (23)

defines the energy-momentum tensor, such that

E :=

∫
d3x T 00, pi :=

∫
d3x T 0i (24)

are the total energy and total momentum of the field con-
figuration respectively. Removing the infinitesimal factor
[hence freeing up two more indices], the conserved cur-
rent is really

(jµ)αβ = xαTµβ − xβTµα. (25)

This satisfies ∂µ(jµ)αβ = 0, and so there are 3 × 2 = 6
conserved currents, and hence also 6 conserved charges.

For α, β ∈ {1, 2, 3}, the Lorentz transformation is a
spatial rotation and the three conserved charges give the
total angular momentum of the field:

Qij =

∫
d3x

(
xiT 0j − xjT 0i

)
= xipj − xjpi. (26)

This is nothing but our familiar expression of angular
momentum. What about the boost part? Well, it is
simply

Q0i =

∫
d3x

(
x0T 0i − xjT 0i

)
. (27)

Since this is conserved, we have

0 =
dQ0i

dt
(28)

=

∫
d3x T 0i + t

∫
d3x

∂T 0i

∂t
− d

dt

∫
d3x xiT 00 (29)

= pi + t
dpi

dt
− d

dt

∫
d3x xiT 00. (30)

The second term vanishes since momentum pi is con-
served. Thus we conclude that

d

dt

∫
d3x xiT 00 = const. (31)

That is, the center of energy of the field travels with
constant velocity. We can find the exact expression for
the conserved charge Q0i. This is given by, in the unit
c = 1,

Q0i = x0pi − xiE = (t~p− ~xE)i = γm (~vt− ~x)
i
. (32)

That is, the conserved charge is the center of mass mul-
tiplied by mass times the Lorentz factor γ, just like what
we would expect from our discussion on the conserved
charged corresponding to Galilean boost.



3

III. GENERAL RELATIVIST: KILLING
VECTORS

In general relativity, symmetry means isometry. Given
a timelike Killing vector, there corresponds a conserva-
tion law of some kind. Note that given a spacetime man-
ifold, the existence of a Killing vector is not automatic.
Therefore, symmetry is generically a rare thing in gen-
eral relativity. For example, energy conservation does
not hold. Back in good old quantum field theory on flat
spacetime, when we say that energy is conserved, this is
traced back to the fact that there exists time translation
symmetry. In an expanding universe for example, there
is no such thing as time translation symmetry, and hence
also no energy conservation.

We first recall the meaning of Killing vectors. Let M
be a semi-Riemannian manifold, i.e. the tangent space
TpM at any point in M is isometric to R3,1. We call M
a spacetime. Let X,Y be vector fields on M . Recall that
the Lie derivative £XY is another vector field [and thus
is a derivation that acts on smooth functions] such that

(£XY )f = [X,Y ]f = (XY − Y X)f ; ∀f ∈ C∞(M).
(33)

That is, if you are not familiar with Lie derivative, just
think of it as a Lie bracket defined on the tangent space.
Now, just like the more familiar covariant derivative [to
be reviewed below], the Lie derivative can be extended
to tensors of any type by requiring that £Xf = Xf and
compatibility with contractions. E.g. let Y be a (1, 0)-
tensor [i.e. vector] and ω be a (0, 1)-tensor [i.e. one-form],
then ω(Y ) is a (0, 0)-tensor, i.e. a scalar. If we demand
Leibnizian property to hold, then

0 = £X(ω(Y )) = X(ω(Y )) = (£Xω)Y +ω(£XY ). (34)

This means that we should define the Lie derivative of
one-form by:

(£Xω)(Y ) := X(ω(Y ))− ω(£XY ). (35)

Definition: A vector field X is called a Killing vector
field with respect to the metric g if £Xg = 0.

Essentially, this is saying that geometry determined
by the metric does not change if we move in the flow of
the Killing vector field. More technically, we note that
if Gt : (M, g) −→ (M, g) is a family a diffeomorphism
determined by the vector field X, and G∗t g = g, then
d
dt |t=0 = £Xg.

We quickly recall properties of covariant derivatives:
Given any vector fields X abd Y , the covariant derivative
∇XY (p) depends only on X(p). We have

∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y, (36)

and

∇X(fY ) = (Xf)Y + f∇XY. (37)

Like the Lie derivative, ∇X can be extended to tensors of
any type, by requiring that∇Xf = Xf and compatibility
with contractions.

Exercise: Compare and contrast various notions of
derivatives in differential geometry: Lie derivative, co-
variant derivative, exterior derivative. Make sure you
understand them! While you are at it, also look at the
idea of anti-derivation, and in particular, the notion of
interior product. While physicists don’t usually pay ex-
tra care on the spaces these operators are defined, you
should try to do so! For example, what should take the
places of heart and spade in ∇X : ♥ −→ ♠?

Remark: Note that ∇X(fY ) 6= f∇X(Y ), so ∇X(W )
is not a tensor in W ! If you are introduced to tensors by
its transformation laws without knowing what tensors
are, you will be confused! But if you know that tensors
are multilinear map, this would be obvious! However,
of course any covariant derivative of a tensor field is a
tensor!
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Lemma: (£Xg)µν = ∇νXµ +∇µXν .
Proof:

(£Xg)µν = X(gµν)− g
(

£X
∂

∂xµ
,
∂

∂xν

)
− g

(
∂

∂xµ
,£X

∂

∂xν

)
(38)

=

(∇Xg︸ ︷︷ ︸
=0

)µν + g

(
∇X

∂

∂xµ
,
∂

∂xν

)
+ g

(
∂

∂xµ
,∇X

∂

∂xν

)− g([X, ∂

∂xµ

]
,
∂

∂xν

)
− g

(
∂

∂xµ
,

[
X,

∂

∂xν

])
(39)

= g

(
∇X

∂

∂xµ
−
[
X,

∂

∂xµ

]
,
∂

∂xν

)
− g

(
∂

∂xµ
,∇X

∂

∂xν
−
[
X,

∂

∂xν

])
(40)

= g

(
∇∂µX,

∂

∂xν

)
+ g

(
∂

∂xµ
,∇∂νX

)
since torsion free condition implies ∇XY −∇YX = [X,Y ], (41)

= g

(
Xρ

;µ

∂

∂xρ
,
∂

∂xν

)
+ g

(
∂

∂xµ
, Xρ

;ν

∂

∂xρ

)
(42)

= ∇νXµ +∇µXν . (43)

We thus have the following result:

Killing Equation: ∇νXµ +∇µXν = 0. (44)

We then have the following theorem:
Theorem: The space of Killing fields of (R3,1, η) is a

10-dimensional vector space.
For a proof, consider canonical [global] coordinates

(t, x, y, z) on R3,1. For Minkowski space, covariant
derivative reduces to the usual partial derivatives and
so the Killing equation is ∂µXν + ∂νXµ = 0. Obviously,
for any fixed ν, the constant vector fields Xµ

(ν) = δµν ,

i = 0, 1, 2, 3 are trivial solutions to the Killing equation.
These Killing vectors give rise to spacetime translations
along their respective coordinate axes.

Consider now the ansatz Xν = Cµνx
µ, some linear

combinations of coordinate vector fields, where Cµν =
Cµν(xµ, xν). Then, we have, by the Killing equation,

∂µ(Cανx
α) + ∂ν(Cαµx

α) = 0 (45)

⇒ Cαν∂µx
α + Cαµ∂νx

α = 0 (46)

⇒ Cµν = −Cνµ. (47)

That is, Cµν is antisymmetric in µ←→ ν. Since 4C2 = 6,
there are 6 independent solutions of this form, all of
which are linearly independent of the trivial Killing vec-
tors Xµ

(ν) = δµν . Thus, the dimension of this vector space

is at least 10.
Exercise: Complete the proof that the dimension of

vector space of linearly independent Killing vectors is in-
deed 10 in Minkowski space. Since we have shown above
that the dimension is at least 10, you can finish the proof
by showing that the dimension is at most 10. This can be
done by proving the general result that the Lie algebra
of Killing vector fields on a connected semi-Riemannian
manifold of dimension n is at most n(n + 1)/2. Hint:
Fix p ∈ M . Let E be the map that sends each Killing

vector field X to (Xp, (∇X)p) where (∇X)(Y ) = ∇XY
for all smooth vector fields X and Y . That is, E is a
linear transformation from the Lie algebra of Killing vec-
tor fields to TpM × o(TpM), where o(TpM) is the Lie
algebra consisting of all skew-adjoint linear operators on
TpM . Use elementary facts about linear transformations
to argue that the dimension must be at most n(n+ 1)/2.
Remark: If the upper bound is saturated, such spacetime
is said to be maximally symmetric.

One can easily verify explicitly, that among the 6 in-
dependent solutions, there are 3 with components of the
form

Y l(k) =
∑
m

εlkmxm, k, l ∈ {1, 2, 3}, Y 0
(k) = 0, (48)

which corresponds to spatial rotations about the xk-axis.
For example,

Y3 = Y 2
3︸︷︷︸

=x1

∂

∂x2
− Y 1

3︸︷︷︸
=x2

∂

∂x1
. (49)

There are 3 other Killing vectors with components the
forms

Xi
(k) = δikt; X0

(k) = xk. (50)

This corresponds to the Lorentz boosts. More explicitly,
the Lorentz boosts correspond to the Killing vectors

t
∂

∂xk
+ xk

∂

∂t
. (51)

For example, boosting along x1-axis corresponds to

t
∂

∂x1
+ x1

∂

∂t
= δ11t

∂

∂x1
+X0

(1)

∂

∂t
. (52)



5

One should compare Eq.(51) with Eq.(32) and see that
we are almost done with getting the conserved charge for
Lorentz boost. If we assume (+,−,−,−) signature, we
can consider first the following result:

Corollary: Let K be a Killing vector field, and x(τ)
be a geodesic. Then the quantity Kµẋ

µ is constant along
the geodesic. The proof is straightforward:

d

dτ
(Kµẋ

µ) = (∇τKµ)ẋµ +Kµ∇τ ẋµ (53)

= ∇νKµẋ
ν ẋµ + 0 (54)

=
1

2
(∇νKµ +∇µKν)ẋµẋν = 0. (55)

Thus, we take Eq.(51), and take inner product with
the geodesics xµ(τ), with ẋ(τ) ≡ u(τ). Then we obtain
g
(
t ∂
∂xk

+ xk ∂∂t , u
)

= gijtδ
i
ku

j+g00x
kδ00u

0 = −tpk+xkE,

where uk = pk/m, u0 = E/m. Thus the conserved charge
agrees with that of Eq.(32).

IV. AN ALMOST TRIVIAL OBSERVATION

An alternative, non-rigorous way to find the conserved
charge corresponding to Lorentz boost is as follows: Re-
call that for rotation in R3, the conserved charges are
angular momenta. WLOG, say if we consider rotation
around the z-axis, then the angular momentum xpy−ypx
is conserved. Now recall that in 4-dimensional spacetime
rotation is described by matrix of the following form 1 0 0 0

0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 . (56)

On the other hand, we know that Lorentz boost in the
x-direction, say, is given by the matrix coshφ − sinhφ 0 0

− sinhφ coshφ 0 0
0 0 1 0
0 0 0 1

 , (57)

where tanhφ = v. Of course, v is really v/c, with c = 1
in our unit.

Exercise: This question is not usually raised in typi-
cal relativity course: why do we bother with introducing
φ as a variable in place of v? The reason is that velocity
addition is not linear in Special Relativity and this com-
plicates calculation. Explicitly [for simplicity, consider
2-dimensional Lorentz boost], the Lorentz boost is given
by the matrix

Λ(v) =

(
γ −vγ
−vγ γ

)
. (58)

Verify that this satisfies

Λ(v1)Λ(v2) = Λ

(
v1 + v2
1 + v1v2

)
. (59)

We want to find a variable that allow us to add linearly,
call it φ. Particle physicists love to call this “rapidity”.
Mathematically, we want to find a function v = f(φ)
which is one-to-one and satisfies the homomorphism

Λ(f(φ1))Λ(f(φ2)) = Λ(f(φ1) + f(φ2)). (60)

That is,

f(φ1 + φ2) =
f(φ1) + f(φ2)

1 + f(φ1)f(φ2)
. (61)

This suggests the choice f(φ) = tanhφ. If we require that
v and φ agrees at low velocity, prove that this choice is
in fact unique. Hint: Show that f ′(φ) = 1− f2(φ), where
prime denotes derivative with respect to φ. You can then
simply appeal to the uniqueness theorem of ODE.

Thus we see that in place of spatial rotation, we now
have hyperbolic rotation in R3,1. Instead of preserving
circle, this rotation preserves hyperbola. Thus, instead
of angular momentum

xpy − ypx, (62)

we now have, analogously, simply

tpx − xpt = tpx − xE. (63)

Remember that energy is essentially “momentum in the
time direction”!
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